DSPy Assertions:
Computational Constraints for Self-Refining Language Model Pipelines

Arnav Singhvi”! Manish Shetty *! Shangyin Tan

1

Christopher Potts> Koushik Sen! Matei Zaharia' Omar Khattab >

Abstract

Chaining language model (LM) calls as compos-
able modules is fueling a powerful way of pro-
gramming. However, ensuring that LMs adhere
to important constraints remains a key challenge,
one often addressed with heuristic “prompt engi-
neering”. We introduce LM Assertions, a new
programming construct for expressing computa-
tional constraints that LMs should satisfy. We
integrate our constructs into the recent DSPy
programming model for LMs, and present new
strategies that allow DSPy to compile programs
with arbitrary LM Assertions into systems that
are more reliable and more accurate. In DSPy,
LM Assertions can be integrated at compile time,
via automatic prompt optimization, and and/or at
inference-time, via automatic self-refinement and
backtracking. We report on two early case studies
for complex question answering (QA), in which
the LM program must iteratively retrieve informa-
tion in multiple hops and synthesize a long-form
answer with citations. We find that LM Asser-
tions improve not only compliance with imposed
rules and guidelines but also enhance downstream
task performance, delivering intrinsic and extrin-
sic gains up to 35.7% and 13.3%, respectively.

1. Introduction

Language models (LMs) now power various applications
in Natural Language Processing (NLP) from conversational
agents to writing assistants. However, the probabilistic na-
ture of LMs often results in outputs that may not align with
the constraints of the domain or the larger pipeline in which
the LM is used. To address this, researchers have explored
various techniques, including applying constrained decoding
(Hokamp & Liu, 2017; Hu et al., 2019), monitoring model

“Equal contribution 'University of California, Berkeley, US
2Stanford University, Stanford, US.

assertions (Kang et al., 2020), exploring approaches for self-
reflection and tree search (Madaan et al., 2023; Shinn et al.,
2023; Yao et al., 2023), or even building domain-specific
languages and systems such as LMQL (Beurer-Kellner et al.,
2023) and Guardrails (Rebedea et al., 2023) to steer LMs
towards more controllable outputs.

Recently, several LM application frameworks like
LangChain (Chase, 2022) and LM programming models
like DSPy (Khattab et al., 2022; 2023) have been proposed,
providing developers with simpler interfaces to build com-
plex LM pipelines. While these frameworks offer a number
of key features to control LM outputs (e.g., DSPy’s auto-
matic compiler), they lack the expressiveness to specify
arbitrary computational constraints on LM pipelines and
enable them to learn from these constraints and to intro-
spectively self-refine outputs. While some of this may be
achieved via pain-staking “prompt engineering” or other
ad-hoc guidance strategies, this would be labor-intensive
and in general conflates high-level program design with
the low-level exploration of teaching LMs how to follow
constraints and using them iteratively for self-refinement.

We introduce LM Assertions, a novel programming con-
struct designed to enforce user-specified properties on LM
outputs within a pipeline framework. Drawing inspira-
tion from runtime assertions and program specifications
in traditional programming, LM Assertions are expressed
as boolean conditions that reflect the desired characteristics
of LM outputs. Besides serving as conventional runtime
monitors, LM Assertions create multiple new ways to im-
prove LM programs. First, they can be used to facilitate
runtime self-refinement in LM pipelines. When an LM
Assertion fails, instead of simply terminating, the pipeline
backtracks and retries the failing pipeline module. LM asser-
tions provide feedback on retry attempts; they inject erring
outputs and error messages to the prompt to introspectively
self-refine outputs. Figure 1 illustrates this self-refinement
process in a DSPy pipeline. Second, LM Assertions can en-
able guided prompt optimizers at compile time. Integrated
with existing automatic prompt optimizers, like in DSPy,
they can enable compiling harder few-shot examples, which
tunes LM programs into systems that are more robust and

DSPy Assertions: Computational Constraints for Self-Refining Language Model Pipelines

accurate. In the same vein, the failing LM assertions can
also be used to collect counter-examples for optimizers.

We distinguish between two types of LM Assertions: (hard)
Assertions and (soft) Suggestions, denoted by Assert and
Suggest, respectively. Hard assertions represent critical
conditions that, when violated after a maximum number
of retries, cause the LM pipeline to halt, signaling a non-
negotiable breach of requirements. On the other hand, sug-
gestions denote desirable but non-essential properties; their
violation triggers the self-refinement process, but exceeding
a maximum number of retries does not halt the pipeline.
Instead, the pipeline continues to execute the next module.

We implement our work by extending the capabilities of the
DSPy framework, a state-of-the-art framework for building
and automatically optimizing declarative LM pipelines, by
integrating LM Assertions as a module. This integration not
only enables DSPy programs to self-refine and produce out-
puts that adhere to specific guidelines but also simplifies the
debugging experience, providing developers with a clearer
understanding of LM behavior within complex pipelines. In
addition, by combining LM Assertions with prompt optimiz-
ers in DSPy, we envision the potential to bootstrap harder
few-shot demonstrations to make the pipeline more robust
and performant.

We evaluate our approach on the downstream multi-hop
QA task of generating brief 1-5 word answers for ques-
tions within the HotPotQA dataset. We apply LM Asser-
tions to refine retrieval queries by imposing requirements
of conciseness and distinctness from past queries to en-
sure precise information retrieval and answer correctness.
Our experiments show that by incorporating the assertion,
search queries are 27.2%-35.7% more likely to be distinct
from previous queries; thus, retrieval queries can fetch more
useful information in the context. As a result, the useful pas-
sages retrieved increase 4.2%-13.3%, and the final answer
correctness increases 1.3%—1.4%.

We build on this with an enhancement to the task: gener-
ating citation-inclusive paragraphs to answer the questions
(Gao et al., 2023). This task exemplifies the utility of LM
Assertions, requiring the LM to adhere to strict formatting
rules and maintain fidelity to cited sources. By incorpo-
rating computational constraints into the DSPy framework,
we demonstrate significant improvements in the quality of
generated content with more than 16.7% more faithful cita-
tions, showcasing the potential of LM Assertions to elevate
the performance of LMs in tasks that demand precision and
adherence to domain-specific rules.

2. Background and Motivation

The goals of LM Assertions are general and can be applied
to any LM program. Due to its modular paradigm, flexibility,

and extensibility, we implement our work as extensions to
the state-of-the-art DSPy (Khattab et al., 2023) framework.
Below, we briefly describe the DSPy programming model
for building declarative LM pipelines and compiling them
into auto-optimized prompt (or finetune) chains. We then
sketch a realistic, motivating example for LM Assertions and
show their usefulness for self-refinement in LM pipelines.

2.1. The DSPy Programming model

DSPy is a framework for programmatically solving ad-
vanced tasks with language and retrieval models through
composing and declaring modules. The overarching goal
of DSPy is to replace brittle “prompt engineering” tricks
with composable modules and automatic (typically discrete)
optimizers.

First, instead of free-form string prompts, a programmer
using DSPy will define a signature to declaratively specify
what an LM needs to do. For instance, a module may need to
consume a question and return an answer, as shown below:

ga = dspy.Predict("question -> answer")
> ga(question="Where is the Eiffel tower?")
3# Output: The Eiffel Tower is located in Paris, France.

To use a signature, the programmer declares a module with
that signature, like we defined a Predict module above. The
core module for working with signatures in DSPy is Predict

Internally, it stores the supplied signature. When the
signature is called, like a function, it constructs a format-
ted prompt according to the signature’s inputs and outputs.
Then, it calls an LM with a list of demonstrations (if any)
following this format for prompting.

DSPy modules usually call dspy.Predict one or more times.
They generally encapsulate prompting techniques, turning
them into modular functions that support any signature.
This contrasts with handwriting task-specific prompts with
manually tuned instructions or few-shot examples. Consider,
for example, the below DSPy module from Khattab et al.
(2023), which implements the popular “chain-of-thought”
prompting technique (Wei et al., 2022).

| class ChainOfThought(dspy.Module):
2 def __init__(self, signature):

rationale_field = dspy.OutputField(prefix="Reasoning: Think step by step.")
4 signature = dspy.Signature(signature).prepend_output_field(rationale_field)
5 self.predict = dspy.Predict(signature)

def forward(self, #xkwargs):
8 return self.predict(**kwargs)

DSPy modules can be composed in arbitrary pipelines
by first declaring the modules needed at initialization
and then expressing the pipeline with arbitrary code that
calls the modules in a forward method (as shown in the
Chain0fThought module above and the MultiHopQA program
in Section 2.2). Finally, DSPy provides teleprompters,
which are optimizers that can, among other things, automate

1

4
5
6
7
8
9

10

11

12

13

14

DSPy Assertions: Computational Constraints for Self-Refining Language Model Pipelines

generating good quality demonstrations (few-shot examples)
or instructions for a task given a metric to optimize. We
may also refer to the few-shot example selection process as
compiling the LM pipeline application.

Challenges. DSPy signatures provide type hints that softly
shape LM’s behavior. However, the framework currently
lacks constructs developers can use to specify arbitrary com-
putational constraints the pipeline must satisfy. Additionally,
one can imagine the LM pipeline using these constraints
to refine its outputs and to teach the LM to respect these
specifications at compile time.

To address these challenges, we integrate LM Assertions
as first-class primitives in DSPy. In the style of Pythonic
assertions, they are intuitive constructs that allow DSPy to
constrain LM outputs. They are flexible in that they can be
strict restrictions, softer guidelines for backtracking and self-
correction of LM calls, or simple debugging statements. In
what follows, we describe a motivating example of a DSPy
program that uses LM Assertions for multi-hop question
answering.

2.2. Motivating Example

Aiden is a developer building an LM pipeline for multi-hop
question-answering. The task involves the LM performing
a series of inferential steps (multi-hop) before answering a
question while utilizing a retriever to get relevant context.

In a simple DSPy implementation, Aiden may design the
pipeline below, where the LM generates search queries to
collect relevant context and aggregate them to generate the
answer.!

class MultiHopQA(dspy.Module):
def __init__(self):
self.retrieve = dspy.Retrieve(k=3)
self.gen_query = dspy.ChainOfThought("context, question -> query")
self.gen_answer = dspy.ChainOfThought("context, question -> answer")

de

L

forward(self, question):
context = []

for hop in range(2):
query = self.gen_query(context=context, question=question).query

context += self.retrieve(query).passages

return self.gen_answer(context=context, question=question)

However, certain issues with the pipeline might affect its
performance. For instance, since questions are complex,
the generated search query could be long and imprecise,
resulting in irrelevant retrieved context. Another issue is
that similar multi-hop queries would result in redundant re-
trieved context. One might observe that these are properties
of generated queries that are computationally checkable and,

'We borrow this implementation from Khattab et al. (2023).
It captures the key computations in popular multi-hop question-
answering systems such as Baleen (Khattab et al., 2021) and IR-
CoT (Trivedi et al., 2022).

if expressible as constraints on the pipeline, might improve
its performance.

Figure 1 shows a DSPy program with LM Assertions for this
task. To mitigate the issues above, Aiden introduces two soft
LM Assertions: first, they restrict the length of the query to
be less than 100 characters, aiming for precise information
retrieval. Second, they require the query generated at each
hop to be dissimilar from previous hops, discouraging re-
trieval of redundant information. They specify these as soft
constraints using the Suggest construct. The force of this
construct is to allow the pipeline to backtrack to the failing
module and try again. On retrying, the LM prompt also con-
tains its past attempts and suggestion messages, enabling
constraint-guided self-refinement.

In Section 5.3, we evaluate this pipeline on the Hot-
PotQA (Yang et al., 2018) dataset. We find that enabling
the developer to express two simple suggestions improves
the retriever’s recall (by 4.2%-13%) and the accuracy of
generated answers (by 1.3%-1.4%).

3. Semantics of LM Assertions

To help with the goals mentioned above, in this work, we
introduce LM Assertions and integrate them in DSPy. We
define LM Assertions as programmatic elements that dictate
certain conditions or rules that must be adhered to during
the execution of an LM pipeline. These constraints ensure
that the pipeline’s behavior aligns with specified invariants
or guidelines, enhancing the reliability, predictability, and
correctness of the pipeline’s output.

We categorize LM Assertions into two well-defined pro-
gramming constructs, namely Assertions and Suggestions,
denoted by the constructs Assert and Suggest. They
are constructs that enforce constraints and guide an LM
pipeline’s execution flow.

Delineating Assert from Conventional Assertions. The
conventional assert statement, built into most programming
languages, is a debugging aid that checks a condition and,
if the condition evaluates to false, raises an AssertionError
exception, typically terminating the program execution. In
contrast, our Assert construct offers a sophisticated retry
mechanism, while supporting a number of other new opti-
mizations. On an Assert failing, the pipeline transitions to a
special retry state, allowing it to reattempt a failing LM call
while being aware of its previous attempts and the error mes-
sage raised. If, after a maximum number of self-refinement
attempts, the assertion still fails, the pipeline transitions to
an error state and raises an AssertionError, terminating the
pipeline. This enables Assert to be much more powerful
than conventional assert statements, leveraging the LM to
conduct retries and adjustments before concluding that an

DSPy Assertions: Computational Constraints for Self-Refining Language Model Pipelines

1 class MultiHopQAWithAssertions(dspy.Module):

def forward(self, question):
5 context, queries [1, [question]

for hop in range(2):

backtrack and regenerate query with new prompt

dspy.Suggest(len(query) < 100,
"Query should be less than 100 characters")

13 dspy.Suggest(is_query_distinct(query, queries),
f"Query should be distinct from {queries}")

J

16
17
18

context += self.retrieve(query).passages
queries.append(query)

|
|
(query = self.generate_query(context=context, question=question) .query) :
|
|

UPDATED PROMPT WITH FEEDBACK

Context: ...
Question: ...
Past Query: <previous attempt w/ errors> . . .

Instruction: Query should be distinct from . . .
-

return self.generate_answer(context=context, question=question)

Figure 1. DSPy program with LM Assertions for multi-hop question answering task with a retriever. We introduce two suggestions: (1)
the query to retriever should be shorter than 100 characters; (2) the query to retriever should differ from previous queries. Suppose the
second suggestion fails, i.e., the generated query to the retriever is too similar to previous queries. Then, DSPy will construct a new
prompt to retry the generate_query module, with additional fields indicating the previously generated query and a user-defined error

message to help LM refine its generation.

error is irrecoverable.

Delineating Suggest from Assert. In contrast to our
Assert statements, our Suggest statements are softer con-
straints that recommend but do not mandate conditions that
may guide the LM pipeline toward desired domain-specific
outcomes. When a Suggest condition is not met, similar
to Assert, the pipeline enters the special retry state, allow-
ing reattempts of the failing LM call and self-refinement.
However, if the suggestion fails after a maximum number
of self-refinement attempts, the pipeline simply logs a warn-
ing SuggestionError message and continues execution. This
allows the pipeline to adjust its behavior in response to the
suggestion while being flexible and resilient to suboptimal
states (or sub-optimal or heuristic computational checks).

In the following sections, we define the default backtracking
semantics of these constructs more formally. However, we
provide the opportunity to extend custom semantics for both
Assert and Suggest (Section 4.2).

3.1. Semantics of Assert

The Assert construct enforces invariants within the LM
pipeline. The semantics of an assertion can be defined in
terms of a state transition system where o, represents the
pipeline’s state, and the subscript r represents the current
retry count within the state o. The maximum number of re-
tries allowed per assertion is denoted by R. The transitions

can be defined as follows:

o I Assert(e,m) — o, ifeval(c,e) = true
o, b Assert(e,m) — 0,41
ifeval(o,e) = falseand r < R

o, F Assert(e,m) — o+
ifeval(o,e) = falseand r > R

Here, eval(o,) denotes the evaluation of expression e in
state 0. If e evaluates to true, the pipeline transitions to a
new state o’ and continues execution. If e evaluates to false
and the current retry count r is less than the maximum al-
lowed retries R, the pipeline transitions to a retry state o, 1.
Here, the pipeline attempts to recover or adjust its behav-
ior, incrementing the retry count r by one. If the assertion
continues to fail and the retry count reaches R, the pipeline
transitions to an error state o, and an AssertionError with
message m is raised, halting the execution.

3.2. Semantics of suggest

The Suggest construct provides non-binding guidance to the
LM pipeline. Similar to Assert, its semantics can be defined

1

5

16
17
18
19
20

DSPy Assertions: Computational Constraints for Self-Refining Language Model Pipelines

class LongFormQAWithAssertions(dspy.Module):
def __init__(self, passages_per_hop=3):
self.retrieve = dspy.Retrieve(k=passages_per_hop)

self.generate_query = dspy.ChainOfThought("context, question -> query")
self.generate_cited_paragraph = dspy.ChainOfThought("context, question -> paragraph") #has field description to

include citations

def forward(self, question):
context = []

for hop in range(2):

query = self.generate_query(context=context, question=question).query

context += self.retrieve(query).passages

pred = self.generate_cited_paragraph(context=context, question=question)

dspy.Suggest(citations_check(pred.paragraph),

"Every 1-2 sentences should have citations like ’text...

[x]."")

for line, citation in get_lines_and_citations(pred, context):

dspy.Suggest(is_faithful(line, citation), f"Your output should be based on the context:

return pred

"{citations}’.")

Figure 2. DSPy program with LM Assertions for long-form paragraph multi-hop question answering task with a retriever. We introduce
two suggestions: (1) asserting every 1-2 sentences has a citation; (2) every text segment preceding a citation is faithful to its cited

reference.

as follows:

o - Suggest(e,m) — o, ifeval(c,e) = true
o, F Suggest(e,m) — 0,41
ifeval(o,e) = falseand r < R

o, I Suggest(e,m) — o,
ifeval(o, e) = falseand r > R

If the expression e evaluates to true, the pipeline transitions
to a new state o’ and continues execution. If e evaluates
to false and the current retry count does not exceed the
maximum retries R, the pipeline attempts to recover or
adjust its behavior in a retry state o,;. However, different
from Assert, if the suggestion continues to fail and the retry
count r reaches R, the pipeline transitions to a new state
o” where it resets the retry count, logs the message m as
a warning of a SuggestionError that could not be resolved,
and continues executing the next pipeline module.

3.3. Handling Self-Refinement

From the above, both Assert and Suggest allow the pipeline
to retry a failing LM call and self-refine its outputs in a
special retry state. One might observe that this involves
dynamically altering the control flow of the LM pipeline
during execution. On passing assertions and suggestions,
the control flows typically into the next LM pipeline module.
However, to handle failures, the LM pipeline may define an

error handler that determines the next instruction to execute.
The handler takes the current erring state o and the error
message m as inputs and returns a new state. In the new
state, control flows as described in Section 3.1 and 3.2. For
both Assert and Suggest, if the maximum retry attempts are
not surpassed, the handler yields the control to the failing
LM module with an updated prompt that includes past fail-
ing outputs and instructions. However, upon exceeding the
maximum retries, the handler halts the execution for a fail-
ing Assert or progresses to the next module in the pipeline
for a Suggest.

In the next section, we describe the implementation of these
constructs and handlers in DSPy.

4. Implementation

We introduce the proposed LM Assertions as plug-in inter-
faces in the DSPy framework according to the semantics in
Section 3. Next, we describe details about the design of our
APIs and how we implement the semantics of both Assert
and Suggest in DSPy.

4.1. API Design

1 dspy.Assert(constraint: bool, message: Optional[str],
2 backtrack: Optional[module])
3dspy.Suggest(constraint: bool, message: Optional[str],
4 backtrack: Optional[module])

We inherit a simple API design for LM Assertions. Both
suggestions and assertions take a boolean value constraint

DSPy Assertions: Computational Constraints for Self-Refining Language Model Pipelines

as input. Note that the computation for constraint can
invoke other DSPy modules, potentially calling the LM to
inform the result for the constraint. Then, the user provides
an optional error message, which is used for error logging
and feedback construction for backtracking and refinement.
Finally, to enable backtracking, both dspy.Assert and dspy
.Suggest contains an optional backtrack argument, which
points to the target module to backtrack to if the constraints
fail.

4.2. Error Handlers

To implement various strategies of both assertions and sug-
gestions for different use cases, we exploit Python’s native
error and exception handling.

We encode error-handling logic as function wrappers. To
that extent, we provide a primitive constraint_tranform to
wrap any DSPy module with handlers. When the con-
straints in dspy.Assert and dspy.Suggest are false, they
raise AssertionError and SuggestionError, respectively.
Then, the dedicated error handling clause in the function
wrapper can reroute the errors to the correct semantics.

As a result, the program’s behavior after an assertion or
suggestion error is completely controlled by the handlers
used. To support flexibility in using LM Assertions with
DSPy, we implement several composable handlers, such as
disabling suggestions and assertions, suppressing assertion
errors with logging, etc.

The default handlers follow the semantics as described in
Section 3 to enable self-refinement. That is, we allow R
retry attempts for AssertionError and SuggestionError by
backtracking to the failing LM. After R retry attempts, an
AssertionError will be raised while SuggestionError will
only be logged silently.

4.3. Backtracking

To implement backtracking in DSPy, we introduce a new
auxiliary meta-module called Retry. This module is a
lightweight wrapper for anyDSPy module, providing ad-
ditional information about all previously unsuccessful pre-
dictions. When DSPy determines the need to backtrack to a
specific module, it calls Retry. As shown in Figure 1, the
Retry module automatically adds the failed predictions and
the corresponding user-defined error messages raised to the
prompt. Then, the LM pipeline can backtrack to the previ-
ously failed module with this updated prompt. In this way,
the original module to refine is self-aware and informed of
past attempts and errors on them. Consequently, this empow-
ers the LM to develop more informed and error-avoiding
generations in subsequent iterations of self-refinement.

5. Evaluation

In formulating and evaluating LM Assertions, we consider
the following hypotheses:

H1 LM Assertions facilitate automating self-correction
and refinement for arbitrary LM pipelines by showing
past outputs and error messages to the LM.

H2 Self-refinement guided by LM Assertions can also en-
able LM pipelines to improve downstream application
performance.

H3 When used with DSPy teleprompters to compile few-
shot examples, LM Assertions help bootstrap more
complex examples to deliver better performance for
the compiled LM pipelines.

H4 Enabling LM Assertions for compilation can col-
lect and optimize demonstrations explicitly for error-
correcting behavior (for the Retry modules), which will
further improve the ability of the LM application to
self-refine.

In this version of our report, we focus on H1 and H2. We
leave the investigation for the remaining hypothesis for fu-
ture versions of our paper. In this report, we explore the
hypotheses using two related question-answering (QA) tasks
and their corresponding DSPy programs. First, we explore
the popular multi-hop QA task and evaluate the effective-
ness of LM Assertions at self-refining search queries for
better retrieval recall as well as overall answer correctness.
Next, we present results on an expanded version of the stan-
dard multi-hop QA task in a long-form QA setting. Here,
the program must produce a long-form answer with citations
to the retrieved context information. We evaluate on this
task as an application of LM Assertions to help generate a
cohesive, well-structured paragraph that is faithful to the
retrieved context.

5.1. Metrics

For evaluating each task, we consider two distinct categories
of metrics:

¢ Intrinsic Quality measures the degree to which the
outputs conform to the LM Assertions specified within
the program. This metric is a benchmark for the sys-
tem’s ability to pass internal validation checks.

* Extrinsic Quality assesses the impact of LM Asser-
tions on the pipeline’s performance in downstream,
task-specific contexts, often ones we cannot assert di-
rectly without access to the ground-truth labels. Here,
constraints act as guiding principles that indirectly
influence the system’s effectiveness in achieving its

DSPy Assertions: Computational Constraints for Self-Refining Language Model Pipelines

objectives. By serving as proxies for more complex
goals, the constraints provide insights into how their
integration can lead to enhancements in downstream
application performance, such as improved accuracy
in question-answering tasks or the generation of more
coherent and contextually accurate long-form answers.

These two metrics will respectively enable us to investi-
gate the hypotheses that LM Assertions can facilitate self-
correction and refinement in LM pipelines and that such
guided self-refinement can enhance the performance of
downstream applications.

5.2. Dataset & Models

For both tasks, we utilize the HotPotQA (Yang et al., 2018)
dataset in the open-domain “fullwiki” setting to evaluate
our downstream tasks. Since the HotPotQA test set is not
publicly accessible, we reserve the official validation set
for testing. We then partition the official training set into
subsets: 70% for training and 30% for validation. We only
focus on examples labeled as “hard” within the dataset to
align with the criteria marked by the official validation and
test sets. For training and development sets, we sample 300
examples each. Herein, we report development set scores
to avoid repeated evaluation on the test set. We will include
expanded test results in a future version of this report.

For retrieval, we use the official Wikipedia 2017 “abstracts”
dump of HotPotQA using a ColBERTV2 (Santhanam et al.,
2021) retriever. We test the program using OpenAl’s
gpt-3.5-turbo (Brown et al., 2020) language model with
max_tokens=500 and temperature=0.7 for our experimental
setup. For each task, we run two sets of experiments to
test the effectiveness of LM Assertions (particularly in the
form of Suggest), including both uncompiled and compiled
modules. Uncompiled modules (ZeroShot) are zero-shot
DSPy modules that infer the response from the questions
and context directly. Compiled modules (FewShot) contain
additional few-shot demonstrations in the prompt crafted by
the DSPy compiler (Khattab et al., 2023).

5.3. Case Study: Multi-Hop QA
5.3.1. TASK & METRICS

In this task, we explore complex question answering through
the multi-hop program from Khattab et al. (2023). This task
involves generating queries related to the given question,
iteratively retrieving relevant context from a search index,
and synthesizing this information to generate an answer.

Figure 1 shows an implementation of this task in DSPy. As
shown, in each hop, a dspy.Chain0fThought module gener-
ates a search query for the retriever based on the current ac-
cumulated context and the initial question. A dspy.Retrieve

then fetches k relevant passages which are aggregated to
the context. Once the loop reaches the maximum number
of hops, a dspy.Chain0fThought module produces the final
answer. With this task and LM pipeline, we aim to produce
a robust and thorough reasoning process leading to accurate
answers to questions.

We assess intrinsic performance using a Suggestions Passed
metric, which quantifies the proportion of suggestions
passed across at inference time. For programs with LM
Assertions, we measure the last run of the backtracking
process (if any). For extrinsic quality, we use (1) Retrieval
Score, which quantifies the proportion of correctly retrieved
gold passages, and (2) Answer Correctness, which checks
if the generated answer precisely matches the gold stan-
dard answer. Both of these are not possible to use directly
at inference time, since they require access to ground-truth
labels.

5.3.2. CONSTRAINTS SPECIFIED

We define two simple Suggest statements. First, we suggest
that the query generated be short and less than 100 charac-
ters, with the goal of reducing imprecise retrieval. Second,
we require that a generated query is distinct from previous
queries. This discourages the pipeline from retrieving re-
dundant context in each hop. Note that the condition checks
for both constraints are implemented using simple Python
code. Overall, these constraints enable the self-refinement
of the search queries generated by the program.

5.3.3. EVALUATION

For this task, we evaluate the MultiHopQA program under
various configurations to understand the impact of LM As-
sertions and few-shot learning techniques. Table 1 shows
the results of this evaluation.

Our simplest baseline is the MultiHopQA in a zero-shot,
uncompiled configuration (ZeroShot—NoSuggest). When
we include the mentioned assertions within this zero-shot
configuration (ZeroShot—Suggest), we see a notable im-
provement of 35.7% more suggestions passed, meaning the
retrieval query generation LM is more likely to generate con-
cise, precise, and distinct queries. Then, we observe ~13.3%
in the retrieval score and an indirect ~1.3% increase in an-
swer correctness due to refined query generation.

We take advantage of optimizations in the DSPy compiling
framework, utilizing the BootstrapFewShotWithRandomSearch
teleprompter, which automatically generates and integrates
few-shot examples doing a random search over a set of can-
didates within the MultiHopQA program. We include a
maximum of 2 bootstrapped few-shot examples to fit within
the context window and compile 6 candidates on the devset
examples. We apply this evaluation approach to both the

DSPy Assertions: Computational Constraints for Self-Refining Language Model Pipelines

Table 1. Evaluation of MultiHop Question Answering with HotPotQA. This table presents comparisons across various strate-
gies, including ZeroShot (uncompiled) and FewShot (includes few-shot example demonstrations, compiled with DSPy’s
BootstrapFewShotWithRandomSearch teleprompter), both with and without assertions (NoSuggest and Suggest). Metrics measured are
Suggestions Passed, Retrieval Score and Answer Correctness (Section 5.3.1)

Suggestions Passed Retrieval Score

Answer Correctness

Configuration

ZeroShot—-NoSuggest 64.3%
ZeroShot—Suggest 87.3%
FewShot—-NoSuggest 65.0%
FewShot—Suggest 82.7%

34.7% 45.7%
39.3% 46.3%
40.3% 49.3%
42.0% 50.0%

vanilla MultiHopQA and the MultiHopQA with Assertions
programs. In the non-assertion configuration (FewShot—
NoSuggest), we see a strong performance gain in retrieval
score and correctness, which highlights the efficacy of utiliz-
ing few-shot techniques to refine the querying and reasoning
processes. We find that combining few-shot learning with
assertions (FewShot—Suggest) further demonstrates im-
provements of both ~27.2% more passed constraints and
~1.4—4.2% on both extrinsic metrics.

5.4. Case Study: LongForm QA
5.4.1. TASK & METRICS

In this task, we build on the multi-hop QA (Section 5.3) task
by expecting long-form answers to questions that include
citations to referenced context.

Figure 2 shows an implementation of this task in DSPy. As
shown, it is nearly identical to Figure 1 outside of the intro-
duction of a new dspy.Chain0fThought module that generates
cited paragraphs referencing the retrieved context. With this
task and LM pipeline, we aim not just to produce accurate
answers but to generate well-structured long-form answers
that are faithful to the retrieved context.

We assess intrinsic performance using asophisticated metric,
Citation Faithfulness. In this metric, a small DSPy program
uses the LM to check if the text preceding each citation
appropriately supports the cited context. Our check outputs
a boolean for faithfulness, which is then averaged across
the citations in the output to aggregate a metric for evalua-
tion. As extrinsic metrics, we use: (1) Answer Correctness,
verifying if the gold answer is correctly incorporated; (2)
Citation Precision, gauging the proportion of correctly cited
titles; and (3) Citation Recall, measuring the coverage of
gold titles cited.

5.4.2. CONSTRAINTS SPECIFIED

We introduce more complex suggestions here, unlike in Sec-
tion 5.3. As a simple initial check, we include a Suggest
statement that requires every 1-2 of sentences generated has

citations in an intended format. This is checked by a simple
Python function citations_check. As a more sophisticated
check, we Suggest that the text preceding any citation must
be faithful to the cited context, ensuring that the reference
text accurately represents the content of the cited informa-
tion. Since this is a fuzzy condition, we employ a small
DSPy program (one that uses the LM) to perform this check.
Notably, the robust API design of Suggest allows the user
to specify arbitrary expressions as conditional checks, such
as an LM call. The goal of this Suggest statement is to en-
sure that all sentences are appropriately attributed to correct
supporting sources.

5.4.3. EVALUATION

We extend our analysis to the LongFormQA task to under-
stand how different configurations impact the quality of
generated paragraphs with citations to answer questions in
terms of citation faithfulness, recall, precision, and answer
correctness. We employ a similar evaluation methodology
used in the MultiHopQA evaluation (5.3.3).

We start with the simplest baseline: LongFormQA in a zero-
shot, uncompiled configuration (ZeroShot—NoSuggest).
Introducing assertions in this zero-shot setting (ZeroShot—
Suggest) yields a highly significant ~16.7% improvement
on the intrinsic citation faithfulness metric, indicating the
effect of imposed constraints in maintaining proper cita-
tion formatting and referencing. Furthermore, we also ob-
serve gains across all extrinsic metrics—recall, precision,
and correctness—reflecting the value of effective citation in-
clusion in enhancing the overall quality of the generated
paragraphs in providing composite answers.

Again, we explore enhancements by compiling with few-
shot examples in DSPy using a random search (Sec-
tion 5.3.3). In the non-assertion configuration (FewShot—
NoSuggest), we observe a performance improvement
across metrics as the few-shot demonstrations further re-
fine information retrieval and citations. When including
assertions (FewShot—Suggest), we continue to see notable
gains of ~11.2% in citation faithfulness. However, we do
see a decline in recall and precision, reflecting some com-

DSPy Assertions: Computational Constraints for Self-Refining Language Model Pipelines

Table 2. Evaluation of LongFormQA with Citations Task.

This table covers a comparative analysis across different strate-

gies, including ZeroShot (uncompiled) and FewShot (includes few-shot example demonstrations, compiled with DSPy’s
BootstrapFewShotWithRandomSearch teleprompter), both with and without assertions (NoSuggest and Suggest). Metrics measured are
Citation Faithfulness, Citation Recall, Citation Precision, and Answer Correctness (Section 5.4.1)

Configuration Citation Faithfulness Citation Recall Citation Precision Answer Inclusion
ZeroShot-NoSuggest 76.0% 51.8% 59.4% 66.7%
ZeroShot—Suggest 88.7% 56.3% 64.8% 67.3%
FewShot-NoSuggest 86.3% 62.8% 75.3% 69.3%
FewShot—Suggest 96.0% 62.5% 73.8% 69.3%

plex interplay between adherence to LM Assertions and
optimizing few-shot examples for answer correctness. Yet
we observe that introducing computational constraints does
not decrease performance on the fundamental downstream
metric of answer correctness.

6. Related Work

6.1. Programming with Constraints

Programming with constraints is standard in most program-
ming languages. Popular programming languages like Java
(Bartetzko et al., 2001) or Python (Python Software Foun-
dation, 2023) all support expressing assertions as first-class
statements to perform runtime checks of certain properties.

However, most runtime checks can only be used to warn
the programmer or abort the execution early. Kang et al.
(2020) proposed a concept called model assertion, which
can be used to monitor the behavior of machine learning
models and to improve the quality of a model in training
through data collection. However, among the key differ-
ences in our work is that LM Assertions abstract automatic
self-refinement on violating the assertions. Our Assert and
Suggest constructs can backtrack an LM pipeline to retry a
failing module. On retry, additional information and feed-
back are automatically injected into the prompt, guiding the
LM program to make better predictions to pass assertions
eventually. As described in Sec 5, LM Assertions can addi-
tionally be used to inform improved compilation of DSPy
programs, though we leave fully specifying and testing this
to future versions of our report.

6.2. Self-Refinement and Correction

By integrating Python-style assertions, we ensure program-
mers can clearly express computational constraints on DSPy
programs and assert desired program behavior. These declar-
ative constraints can then be leveraged by the DSPy com-
piler and runtime in extensible and powerful ways to ab-
stract and generalize notions of self-refinement and DSPy’s
capabilities for prompt optimization. We report on initial

evaluation of an implementation that does so in this work.
Such self-refinement of LLMs (Madaan et al., 2023; Shrid-
har et al., 2023) is central to this approach in making DSPy
autonomous and context-aware (Tyen et al., 2023). En-
forcing methodologies of iterative refinement using error
feedback (Xu et al., 2023) and utilizing reasoning capabil-
ities through presenting past generations and feedback for
correction (Qiu et al., 2023) resonates with the objective of
DSPy assertions.

6.3. Program Synthesis and Sketching

Classical program synthesis generates programs based on
a given specification, involving a search for candidate
programs that match the specification’s structure (Pnueli
& Rosner, 1989; Gulwani et al., 2017). In this space,
particularly relevant to our work are approaches such as
Sketching (Solar-Lezama, 2008) and Template-based syn-
thesis (Srivastava et al., 2013). In sketching (Solar-Lezama,
2009), the programmer specifies a high-level structure
(“sketch”) with placeholders (“holes”) for the synthesis en-
gine to complete. The sketch includes assertions, and the
correctness requirement is that these assertions hold for all
inputs within the bound specified by the synthesizer. We
note that the specification assertions in Sketching corre-
spond to the proposed LM Assertions (Assert and Suggest).
Similarly, a synthesizer parallels an LM pipeline framework,
like the DSPy compiler, striving to compile an optimized
prompt.

6.4. Factual Consistency and Citations

This work evaluates LM Assertions on long-form paragraph
generation with citations to answer questions (Gao et al.,
2023). This task is inspired by several studies with the
objective of ensuring factual consistency and citation qual-
ity from LLM outputs. Existing frameworks (Min et al.,
2023) highlight the complexity of evaluating factual faith-
fulness in natural language generation. Proposed method-
ologies like TrueTeacher (Gekhman et al., 2023) and Chain-
of-Verification (Dhuliawala et al., 2023) demonstrate LLM-
based factual consistency evaluations, which align with the

DSPy Assertions: Computational Constraints for Self-Refining Language Model Pipelines

assertion-based methodology in DSPy for ensuring text-to-
citation faithfulness. Furthermore, benchmarks for auto-
matic attribution evaluation (Yue et al., 2023) and verifying
citations for text generations reflect direct applications for
the motivation of this paper, focused on showing the efficacy
of asserting the presence and respective accuracy of citing
references.

7. Conclusion

‘We have introduced LM Assertions, a new construct for ex-
pressing arbitrary computational constraints on the behavior
of LMs when used as building blocks of larger programs.
We integrate LM Assertions into the DSPy (Khattab et al.,
2023) programming model, define runtime retry semantics,
and an implementation for them that abstracts and general-
izes LM self-refinement approaches to arbitrary steps in ar-
bitrary pipelines. We also discuss several other mechanisms
that our LM Assertion constructs can use to inform DSPy
compilation into higher-quality prompts that reduce the as-
sertion failure rates. Our evaluations show substantial gains
on two case studies, reporting both intrinsic (i.e., assertion-
specific) and extrinsic (i.e., downstream) task metrics. By
enabling DSPy programs to autonomously backtrack and
self-correct, we hope we have opened avenues for building
more reliable LM programs at higher levels of abstraction
than was previously possible.

References

Bartetzko, D., Fischer, C., Moller, M., and Wehrheim,
H. Jass - java with assertions. In Havelund, K. and
Rosu, G. (eds.), Workshop on Runtime Verification, RV
2001, in connection with CAV 2001, Paris, France, July
23, 2001, volume 55 of Electronic Notes in Theoret-
ical Computer Science, pp. 103—117. Elsevier, 2001.
doi: 10.1016/S1571-0661(04)00247-6. URL https:
//doi.org/10.1016/S1571-0661(04)00247-6.

Beurer-Kellner, L., Fischer, M., and Vechev, M. Prompting
is programming: A query language for large language
models. Proceedings of the ACM on Programming Lan-
guages, 7(PLDI):1946-1969, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:

1877-1901, 2020.

Chase, H. LangChain, October 2022. URL https://github.
com/langchain-ai/langchain.

Dhuliawala, S., Komeili, M., Xu, J., Raileanu, R., Li, X.,
Celikyilmaz, A., and Weston, J. Chain-of-verification

10

reduces hallucination in large language models. arXiv
preprint arXiv:2309.11495, 2023.

Gao, T., Yen, H,, Yu, J., and Chen, D. Enabling large
language models to generate text with citations. arXiv
preprint arXiv:2305.14627, 2023.

Gekhman, Z., Herzig, J., Aharoni, R., Elkind, C., and
Szpektor, I. Trueteacher: Learning factual consistency
evaluation with large language models. arXiv preprint
arXiv:2305.11171, 2023.

Gulwani, S., Polozov, O., Singh, R., et al. Program synthesis.
Foundations and Trends® in Programming Languages, 4
(1-2):1-119, 2017.

Hokamp, C. and Liu, Q. Lexically constrained decoding
for sequence generation using grid beam search. arXiv
preprint arXiv:1704.07138, 2017.

Hu, J. E., Khayrallah, H., Culkin, R., Xia, P., Chen, T,
Post, M., and Van Durme, B. Improved lexically con-
strained decoding for translation and monolingual rewrit-
ing. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 839-850, 2019.

Kang, D., Raghavan, D., Bailis, P., and Zaharia, M. Model
assertions for monitoring and improving ml models. Pro-
ceedings of Machine Learning and Systems, 2:481-496,
2020.

Khattab, O., Potts, C., and Zaharia, M. Baleen: Robust
multi-hop reasoning at scale via condensed retrieval. Ad-
vances in Neural Information Processing Systems, 34:
27670-27682, 2021.

Khattab, O., Santhanam, K., Li, X. L., Hall, D., Liang, P.,
Potts, C., and Zaharia, M. Demonstrate-search-predict:
Composing retrieval and language models for knowledge-
intensive nlp, 2022.

Khattab, O., Singhvi, A., Maheshwari, P., Zhang, Z., San-
thanam, K., Vardhamanan, S., Haq, S., Sharma, A., Joshi,
T. T., Moazam, H., Miller, H., Zaharia, M., and Potts,
C. Dspy: Compiling declarative language model calls
into self-improving pipelines. CoRR, abs/2310.03714,
2023. doi: 10.48550/ARXIV.2310.03714. URL https:
//doi.org/10.48550/arXiv.2310.03714.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651, 2023.

Min, S., Krishna, K., Lyu, X., Lewis, M., Yih, W.-t.,
Koh, P. W., Iyyer, M., Zettlemoyer, L., and Hajishirzi,

https://doi.org/10.1016/S1571-0661(04)00247-6
https://doi.org/10.1016/S1571-0661(04)00247-6
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://doi.org/10.48550/arXiv.2310.03714
https://doi.org/10.48550/arXiv.2310.03714

DSPy Assertions: Computational Constraints for Self-Refining Language Model Pipelines

H. Factscore: Fine-grained atomic evaluation of factual

precision in long form text generation. arXiv preprint
arXiv:2305.14251, 2023.

Pnueli, A. and Rosner, R. On the synthesis of a reactive mod-
ule. In Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pp.
179-190, 1989.

Python Software Foundation. 7. simple statements.
https://docs.python.org/3/reference/simple_
stmts.html#the-assert-statement, 2023. Accessed:
2023-12-01.

Qiu, L., Jiang, L., Lu, X., Sclar, M., Pyatkin, V., Bhaga-
vatula, C., Wang, B., Kim, Y., Choi, Y., Dziri, N., et al.
Phenomenal yet puzzling: Testing inductive reasoning ca-
pabilities of language models with hypothesis refinement.
arXiv preprint arXiv:2310.08559, 2023.

Rebedea, T., Dinu, R., Sreedhar, M., Parisien, C., and Cohen,
J. Nemo guardrails: A toolkit for controllable and safe
IIm applications with programmable rails, 2023.

Santhanam, K., Khattab, O., Saad-Falcon, J., Potts, C.,
and Zaharia, M. Colbertv2: Effective and efficient re-
trieval via lightweight late interaction. arXiv preprint
arXiv:2112.01488, 2021.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K. R.,
and Yao, S. Reflexion: Language agents with verbal
reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Shridhar, K., Sinha, K., Cohen, A., Wang, T., Yu, P., Pa-
sunuru, R., Sachan, M., Weston, J., and Celikyilmaz, A.
The art of 1lm refinement: Ask, refine, and trust. arXiv
preprint arXiv:2311.07961, 2023.

Solar-Lezama, A. Program synthesis by sketching. Univer-
sity of California, Berkeley, 2008.

Solar-Lezama, A. The sketching approach to program syn-
thesis. In Asian symposium on programming languages
and systems, pp. 4—13. Springer, 2009.

Srivastava, S., Gulwani, S., and Foster, J. S. Template-based
program verification and program synthesis. Interna-
tional Journal on Software Tools for Technology Transfer,
15:497-518, 2013.

Trivedi, H., Balasubramanian, N., Khot, T., and Sabharwal,
A. Interleaving retrieval with chain-of-thought reason-
ing for knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509, 2022.

Tyen, G., Mansoor, H., Chen, P., Mak, T., and Carbune, V.
Llms cannot find reasoning errors, but can correct them!
arXiv preprint arXiv:2311.08516, 2023.

11

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F,
Chi, E., Le, Q. V,, Zhou, D, et al. Chain-of-thought
prompting elicits reasoning in large language models.

Advances in Neural Information Processing Systems, 35:
24824-24837, 2022.

Xu, W, Deutsch, D., Finkelstein, M., Juraska, J., Zhang, B.,
Liu, Z., Wang, W. Y., Li, L., and Freitag, M. Pinpoint, not
criticize: Refining large language models via fine-grained
actionable feedback. arXiv preprint arXiv:2311.09336,
2023.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W.,
Salakhutdinov, R., and Manning, C. D. Hotpotqa: A
dataset for diverse, explainable multi-hop question an-
swering. arXiv preprint arXiv:1809.09600, 2018.

Yao, S., Yu, D., Zhao, J., Shafran, 1., Griffiths, T. L., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate prob-
lem solving with large language models. arXiv preprint
arXiv:2305.10601, 2023.

Yue, X., Wang, B., Zhang, K., Chen, Z., Su, Y., and Sun,
H. Automatic evaluation of attribution by large language
models. arXiv preprint arXiv:2305.06311, 2023.

https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement

