
TRAINING ON EDGE DEVICES WITH UNIFIED-MEMORY

Arnav Singhvi 1 James DeLoye 1 Anish Shanbhag 1 Shishir Patil 1 Joseph Gonzalez 1

ABSTRACT
Training large-scale generative models directly on consumer devices like laptops and smartphones enhances
privacy and conserves scarce network bandwidth. However, the limited memory and compute available on
these edge devices has restricted on-device training to smaller models. Encouragingly, an emergent system
design of these edge devices is the growing presence of unified memory - where device accelerators including
the CPUs, GPUs, NPUs, etc all share a physically unified memory. We explore how to effectively utilize
this emerging trend to enable the training of memory-intensive models on edge devices. We introduce Private
Optimal Runtime Training (PORT ), an accuracy-preserving algorithm to train state-of-the-art neural networks
on memory-constrained edge devices. PORT frames training as an Integer Linear Programming (ILP) problem,
where each layer of the network can be optimally scheduled on single or multi-accelerator platforms. Additionally,
PORT jointly optimizes over the combined search space of rematerialization and paging while exploiting system
optimizations such as in-place convolutions to reduce peak-memory consumption and runtime of model training.
These optimizations ensure PORT is transparent, accuracy preserving, and can effectively make use of memory-
constrained environments to enable neural network training. PORT achieves up to 1.25x runtime speedups over
current state-of-the-art techniques.

1 INTRODUCTION

Generative models have seen unprecedented advancements
in recent years, growing in complexity and size. While these
larger models offer significant advantages in performance
and capabilities, they remain largely constrained to the pow-
erful computing environments found in cloud servers with
edge devices primarily serving as platforms for inference
rather than training. This limitation reflects an evident dis-
parity between cloud-centric training and utilizing edge de-
vices for training tasks. Additionally, systems deployed in
deep-sea (Jang & Adib, 2019), space and farmlands (Vasisht
et al., 2017) environments among others pose limitations
that can prevent data transmission to these centralized cloud
servers, and ensuring secure data privacy (Li et al., 2020) is
paramount. Hence, there lies a need to develop mechanisms
to enable training on edge devices within localized settings.

Interestingly, the landscape of edge devices is shifting, in
particular towards the adoption of unified-memory architec-
tures. A unified memory architecture is one where different
accelerators such as the CPU and the GPU share the same
RAM, denoted as main memory. This is unlike classical
distributed systems within the cloud where each accelerator

1Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, Berkeley, California, USA.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2024. Copyright 2024 by the author(s).

has its RAM, such as in a system where an Nvidia GPU (e.g,
H100) is paired with a CPU (e.g., Intel Xeon). In contrast,
increasingly, consumer platforms such as Jetson TX2 and
Orin (Khoshsirat et al., 2023) (Spicer & Baidya, 2023) (SK
et al., 2022) which share the same RAM across the CPU
and the GPU, and Apple’s M1/M2/A16 System-on-Chips
(SoCs) for laptops and iPhones (Liao et al., 2022) which
share the same RAM between three accelerators—CPU,
GPU, and Apple Neural Engine (ANE) (Banerjee, 2018)
(Kasperek et al., 2022) —showcase this emerging paradigm.

Within this changing space, generalized beliefs about the
hardware capabilities of edge devices can be misleading.
For instance, it was traditionally assumed that GPUs on
iPhones are designed for performance-intensive tasks while
the Apple Neural Engine (ANE) is optimized for low-power
computing. We dispel such assumptions by demonstrating
that, in reality, certain network layers execute faster on the
GPU, while others are more efficient on the ANE. In this
work Private Optimal Runtime Training (PORT ) leverages
this nuanced understanding to answer the following question
- which accelerator should each node of the Neural Network
be mapped to for optimal performance? Further, given that
peak-memory consumption for training might overshoot the
memory available on edge devices, PORT optimizes over the
joint subspace to rematerialization (deleting the tensor, and
recomputing it), and paging (paging the tensor to secondary
storage such as SSD/HDD/SD card/Flash) to reduce the
peak memory consumption. To do this, PORT first obtains



Training on Edge devices with Unified-Memory

Figure 1. A comparison between memory architectures. The left shows a traditional multi-operator architecture while the right shows a
unified memory architecture.

a fine-grained profile of each operator, and then formulates
the node scheduling as an Integer Linear Program (ILP) to
schedule each node of the training DAG (4.3).

With the hardware profiling of every operator on the target
device, PORT generates a scheduler that is acutely aware
of real-world hardware constraints and capabilities and op-
timizes training runtime and memory consumption within
these environments.

Our methodology encompasses:

1. A novel Integer Linear Program formulation that en-
ables runtime- and memory-efficient scheduling of
deep learning models for unified memory architectures
(Section 4.3).

2. A framework for fine-grained operator profiling to pro-
duce a hybrid scheduling algorithm that accounts for
the unique characteristics of each accelerator (Section
4.2).

3. Real-world analysis of PORT on consumer edge de-
vices, to understand the effect of different optimiza-
tions (Section 5).

To facilitate streamlined use of PORT we also introduce
Torch2PORT (Section 4.4), a conversion algorithm to
convert PyTorch model into graphical representations for
processing by the PORT ILP. Once open-sourced, this
will ensure general applicability for model training within
PORT without manual conversion to maintain model com-
patibility.

2 BACKGROUND

The digital landscape is rapidly shifting towards decentral-
ization, highlighting the importance of edge devices in com-
putational tasks (Sun et al., 2023) (Wang et al., 2022) (Sun
et al., 2021) (Gheorghe et al., 2019) (Zhao et al., 2021). The

ability to execute machine learning tasks closer to the data
source is becoming crucial for several reasons. While prior
works have showcased the potential of edge machine learn-
ing for inference (Boroumand et al., 2021b), (Boroumand
et al., 2021a), there remains a critical gap in understanding
how to train within memory and runtime confines and the
importance of such training on edge devices.

Adapting to Data- and Concept-drifts (Tsymbal, 2004;
Gama et al., 2014): Real-world scenarios often demand
rapid adaptability. Edge devices, which are naturally closer
to the data source, can offer real-time updates to machine
learning models and present quicker response times in these
dynamic environments (Dou et al., 2023), (Khani et al.,
2021). Such devices also operate in offline settings (Sud-
harsan et al., 2020) where internet connectivity is not often
maintained, making it paramount that training on the edge
can serve these devices to adapt and refine their operations.

Privacy: Training on edge devices ensures that user data
remains localized, reducing potential data breaches or mis-
use (Zhao et al., 2018) (Das & Brunschwiler, 2019). By
maintaining this decentralized approach, data transit is min-
imized, reducing exposure points where data could be po-
tentially intercepted or compromised, promoting a more
user-centric digital ecosystem with more trust in machine
learning applications.

Low-Resource Utilization and Optimization: Edge de-
vices are intrinsically constrained and often characterized
by limited memory (Nasir et al., 2022). Many are comple-
mented by off-chip secondary storage such as flash drives or
SD cards, providing an avenue for on-device data retention
and thereby reducing overheads associated with uploading
to cloud storage.

However, such constrained environments require an opti-
mized framework of resource allocation and data handling
to ensure computational efficiency and feasibility. It’s this
very demand of constraint-driven innovation that we delve
into, highlighting optimizations to meet the demands of



Training on Edge devices with Unified-Memory

growing LLMs (Large Language Models) for the next wave
of edge-based applications.

3 RELATED WORK

Given the growing number of Edge deployments (Vasisht
et al., 2017; Jang & Adib, 2019; Patil et al., 2019), there has
been significant work in enabling ML on the edge devices.

3.1 Model Computation on Edge Devices

Paging is a memory management technique that allows data
to be retrieved from secondary storage to main memory on
an as-needed basis. DaCapo (Khan et al., 2023) extends pag-
ing techniques to address memory constraints in embedded
systems by recomputing layer outputs during backpropaga-
tion to save memory space. Yet it lacks consideration on
minimizing runtime overhead from such paging, which is
reflected in our PORT ILP that efficiently distributes com-
putations across multiple specialized compute units to find
optimal solutions for edge devices (4.3).

While (Li et al., 2023) emphasizes hardware memory opti-
mization, PORT goes a step further by addressing on-device
training runtime constraints. (4.2) This addition is crucial
as, beyond memory efficiency, achieving optimal processing
speed is paramount for timely data processing and prevent-
ing latency issues that can drastically affect user experience
or system output.

POET (Patil et al., 2022) optimized model training for edge
devices by representing neural networks through a DAG (Di-
rected Acyclic Graph) of tensor computations and managing
memory via paging or rematerializing techniques. PORT
goes beyond POET’s foundations to ensure efficient training
runtimes and memory consumption reduction by producing
an ILP formulation that optimizes for these goals specifi-
cally (4.2). PORT does this by introducing network opti-
mizations that optimize performance on single-accelerator
configurations (4.1) while also providing node-scheduling
compatibility across multi-accelerator platforms (4.3).

Rockmate (Zhao et al., 2023) provides memory utilization
optimizations to POET’s rematerialization techniques to
minimize computational overhead. Similarly, MOCCASIN
(Bartan et al., 2023) advances compute graph execution
within memory limits using O(n) integer variables for opti-
mized rematerialization. PORT extends past these applica-
tions’ single GPU/TPU accelerator setups by combining the
power of multiple accelerators in parallel to offer competi-
tive runtimes with ensured computational correctness and
memory efficiency (4.3).

3.2 Network Optimizations

MIT MCUNet (Lin et al., 2020) introduces an algorithm-
system framework that optimizes on-device training
on memory-constrained microcontroller units (MCUs).
MCUNet features TinyNas, a two-stage neural architecture
search, optimizing for limited resource constraints. Their
TinyEngine employs in-place depth-wise convolution to re-
duce peak memory overhead and employs model-adaptive
memory scheduling to overcome layer-wise inefficiencies.
While we take inspiration from the in-place convolution
technique within our convolutional optimizations to reduce
memory consumption (4.1.1), we do not adopt pruning or
quantization methods as these do not mitigate the size of
activations in finding feasible solutions. By introducing
our refined computation layer optimizations, we eliminate
the need for a search space overhead to demonstrate our
significant reductions in memory usage.

(Lin et al., 2021) also presents a methodology that uses
patch-based inference to address memory limitations in
deep learning with CNNs on edge devices. Our frame-
works also integrate patch-based inference within Conv2d
layers, where we execute consecutive patch convolutions
and assign them to the specific output path. However, we do
not utilize different optimizers to avoid changing the model
architecture while performing inference on edge devices,
ensuring our optimizations are generalizable when finding
feasible solutions.

3.3 Multi-Operator Algorithms

(Schuler et al., 2022) introduce XEngine, which utilizes a
quadratic programming algorithm to efficiently schedule
multiple network operators in heterogeneous systems with
low memory. However, XEngine only considers remateri-
alization without paging when building schedules from its
MIQP. PORT’s formulation offers enhanced flexibility by
enabling the same computation distribution across opera-
tors sharing a unified memory architecture while ensuring
distributed rematerialization and paging (4.3). PORT-M
presents a robust, scalable solution for emerging SOC de-
signs with shared high-bandwidth memories.

3.4 Unified Memory

(Wu et al., 2023) highlights TGS (Transparent GPU Sharing)
as an OS layer-level heuristic for deep learning training in
container clouds that employs techniques like memory swap-
ping between GPU and host memory across unified memory
for maximal GPU utilization to ensure optimal performance.
(Jung et al., 2023) also promotes GPU memory oversubscrip-
tion, minimizing GPU fault handling time through prefetch-
ing techniques. PORT aligns with this approach to optimize
hardware usage within real-world constraints and memory



Training on Edge devices with Unified-Memory

environments from the memory layer level. PORT empha-
sizes optimal memory flow and accelerator and operator
optimization during network training, providing balanced
GPU usage within its scheduling heuristic while maintaining
feasible training solutions within constrained environments.

(Bai et al., 2020) showcases PipeSwitch, an innovative sys-
tem that enhances GPU utilization by enabling real-time
GPU sharing on deep learning tasks through pipelined con-
text switching, leveraging DNN layers for optimized task
execution. (Kim et al., 2020) similarly applies context-
switching techniques for reducing batches and handling
page faults efficiently. PORT differs with its emphasis on
streamlining individual task training through its memory
optimization strategies tailored to the unified memory en-
vironments of edge devices, relying on dedicated hardware
accelerator usage over context switching between multiple
tasks in parallel.

(Choi et al., 2022) presents hierarchical unified virtual mem-
ory (HUVM) which utilizes the dormant memory of neigh-
boring GPUs as an extension of virtual memory space. To
manage this memory, (Choi et al., 2022) utilize memHar-
vester, a parallel memory manager that allows efficient del-
egation of open memory. On the other hand, PORT opti-
mizes neural network training on edge devices by targeting
reduced peak memory consumption, utilizing layer opti-
mizations, scheduling techniques, and the unified memory
architecture native to contemporary SOCs to facilitate effec-
tive training in reduced memory environments.

4 PORT
PORT employs layer optimizations within single-accelerator
device configurations to reduce model training runtime
and peak-memory consumption. Additionally, PORT ap-
proaches reducing training time as an ILP, scheduling each
layer optimally while considering the combined search
space of rematerialization and paging. PORT extends this
for both single and multi-accelerator platforms, providing
a comprehensive heuristic to make network training more
efficient on edge devices.

4.1 Layer Optimizations

PORT aims to integrate network optimizations within layers
to ensure faster training times. These optimizations not only
enhance computational efficiency but also can reduce peak
RAM consumption by avoiding excessive memory alloca-
tions through optimized memory storage patterns combined
with efficient computation techniques.

4.1.1 In-Place Convolution

In-place convolution, introduced in TinyEngine (Lin et al.,
2021), is an optimization algorithm that primarily targets the

memory overhead associated with the forward pass for the
convolution operation. The naive convolution forward pass
creates an output that requires distinct memory allocation,
leading to significant memory consumption, especially in
deeper networks with multiple convolutional layers. Em-
ploying the in-place convolution optimization overcomes
this by updating the output tensor directly in its original
memory location, reducing the aforementioned memory
consumption of new allocations for each input activation.
Additionally, this provides significant runtime benefits by
decreasing the time required for memory tensor allocation
and deallocation. Improved cache utilization with the tem-
poral locality of the same memory tensor reduces the need
to fetch data within memory, speeding up computations.
In-place optimizations can even lead to simplified computa-
tion graphs which are utilized by the PORT ILP to execute
solutions (when feasible) even quicker. Moreover, hardware
platforms often times are optimized for in-place operations.

4.1.2 Patch-Based Inference

Patch-based inference, a technique inspired by the MCUNet-
v2 model (Lin et al., 2021), reduces memory usage by pro-
cessing data in manageable segments that fit device memory
constraints. Instead of processing large input tensor batches,
the input is divided into smaller, non-overlapping patches.
Each patch is then processed and operated on separately,
reducing peak memory consumption of the network. We
integrate this optimization within the Conv2d layer of our
model frameworks by executing consecutive patch convolu-
tion and respectively assigning to the specific output path.
As each patch yields a smaller Conv2d output shape, op-
erations become faster and require fewer computational
resources. This ensures that the model training can run on
devices with limited RAM without concerns of memory
overflows or comprehensive extensive paging operations
to account for such high memory requirements by larger
models. Employing patch-based inference also maintains
the mathematical integrity and feasibility of the training
process, ensuring the correctness of gradient computations
and model weight updates of model training are maintained
on edge devices.

4.1.3 Im2Col

The im2col transformation for convolutional layers re-
shapes the input into a more suitable format for matrix mul-
tiplication (Jia, 2014). The transformation pads the input,
iteratively slices the padded input into small segments de-
termined by kernel size and stride, and then stretches them
into columns. This ensures the matrix has been reshaped
for matrix multiplication and multiplying the original ma-
trix with the reshaped weight matrix effectively converts
convolution operations into a series of efficient matrix mul-
tiplications. Employing the im2col optimization within



Training on Edge devices with Unified-Memory

our model framework’s convolutional layers allows us to
harness the native advantages of hardware platforms which
are optimized for these efficient matrix multiplications. This
improves runtime and aligns with the overall goal of making
on-device training feasible and efficient.

4.1.4 Loop Reordering

Loop reordering cache optimizations (Sarkar & Thekkath,
1992) (Kalamationos & Kaeli, 1998) transform the forward
pass of convolutional layers from the traditional height-
width-channel (HWC) format to the channel-height-width
(CHW) format, improving memory locality by reducing
the number of cache misses and speeding up computations.
By padding the input systematically and iterating over the
kernel dimensions and strides to align with the convolutional
kernel, this ensures correctness for subsequent operations.
Furthermore, by employing einsum techniques (Imambi
et al., 2021), (Klaus et al., 2023) with the reshaped input
tensor suited for efficient matrix multiplication operations,
this method internally optimizes for memory access patterns
to provide computational speedup.

4.1.5 Operator Fusion

Operator fusion (Lin et al., 2021) (Niu et al., 2021), (Chen
et al., 2018) is another technique popular in ML frameworks
that provides efficient memory utilization and reduced dis-
patch latency for GPUs. Applying this technique within
our CNN frameworks finds a natural application in com-
bining independent operations of consecutive layers, lead-
ing to fewer intermediate results, quicker computation, and
reduced memory footprint by discarding unneeded tensor
outputs. We use operator fusion for training by creating
a forward with Conv2d + BatchNorm and Conv2d +
ReLU combinations, ensuring correctness as we trace the
dependency of all tensors (weights, gradients, activation)
and reorder operators to fuse them.

4.2 PORT: Private Optimal Runtime Training

POET, the state-of-the-art framework for edge device train-
ing, was designed to minimize the power consumption of
training models on edge devices within provided runtime
and memory constraints by modeling neural networks as a
DAG (Directed Acyclic Graph) of their tensor computations.
POET then achieved significant memory savings by either
paging tensors in and out of secondary storage or rematerial-
izing tensors when needed. While provably optimal for this
goal, when working with larger models or platforms that
offer unified memory, minimal training and inference time
is a more critical goal over power savings. To this end, we
introduce PORT’s ILP to ensure reduced runtime and peak
memory consumption.

Below is POET’s objective function and runtime constraint.

It aims to minimize the combined power of tensor com-
putations and paging while setting an upper bound on the
processor’s computational duration for the model.

minimize
T∑

t=1

{
Rt,: · Φcompute

+ M
in
t,: · Φ

pagein
+ M

out
t,: · Φ

pageout
}

(1)

subject to:
T∑

t=1

{
Rt,: ·Ψcompute

}
≤ µdeadline (2)

PORT does away with the runtime constraint and con-
verts the primary objective to the function in Equation 1.
This sums the time taken to compute every tensor in each
timestep to output the schedule’s total CPU computation
time. This is represented with the binary computation ma-
trix R where the entry Rt,i encodes if tensor i is computed
in timestep t and the compute cost vector where Ψcompute

i

reflects the cost of computing tensor i on the device.

α minimize
T∑

t=1

{
Rt,: ·Ψcompute

}
(3)

We additionally refine our formulation to ensure optimal
paging behavior with a secondary objective to ensure that
tensors are paged only when necessary (2). Much like the
R matrix, the matrices M in and Mout are binary matrices
with entries representing if tensor i is paged in or out of
secondary storage, respectively, in timestep t.

β minimize
T∑

t=1

T∑
i=1

{
M in

t,i +Mout
t,i

}
(4)

We label the primary objective the α objective and the sec-
ondary objective the β objective, only minimizing the for-
mer among optimal solutions to the primary objective. As
a result, we can be assured that the paging schedule output
by PORT will minimize extraneous disk usage while main-
taining proper paging to ensure minimized runtime.PORT
hence reduces POET’s dependence on a secondary dynamic
programming algorithm that accounts for the time taken
to page tensors in and out within its ILP to avoid external
complexity.

Additionally, PORT ensures bandwidth awareness and de-
vice consumption within the ILP. Here ξsize is the vector of
tensor sizes while λbandwidth is a constant giving the device
bandwidth. By accounting for bandwidth as a constraint
Equation 3, the bandwidth of the bus between the RAM and
secondary storage cannot be exceeded by the scheduler.

M
in
t,: ·ξ

size
+M

out
t,: ·ξsize ≤

(
Rt,: · Ψcompute

)
λ
bandwidth ∀t (5)



Training on Edge devices with Unified-Memory

4.3 PORT-M: Private Optimal Runtime Training for
Multiple Operators

With the proliferation of unified SOCs which have multiple
specialized compute units (CPU, GPU, TPU) all using the
same high bandwidth memory, there is potential for even
faster training of large models on the same device using
parallelism. In addition, the highly specialized nature of the
hardware means that computations can be distributed to the
hardware with the best-suited architecture. To support this
effort we introduce PORT-M, a version of PORT designed
to distribute computation across any number of operators
that share a unified memory architecture.

4.3.1 Designing the Variables

To start, the binary computation matrix R is extended from
a T × T matrix to a T × T × N tensor R where T is the
number of timesteps and tensors in the network DAG and
N is the number of independent operators working on the
same unified memory. If tensor i is computed at timestep
t on operator n then Rt,i,n = 1. With the extension of
the runtime matrix, we (re)introduce the remaining variable
matrices. As mentioned before, M in and Mout are T × T
binary matrices encoding if a tensor is paged in or out of
secondary storage. Likewise, SRAM and SAUX are T × T
binary matrices encoding if a tensor is resident in memory
or secondary storage, respectively. We also introduce A
which is a one-dimensional matrix with the time that each
timestep takes. U is the matrix of memory consumption
during the computation (or noncomputation) of tensor i in
timestep t. U is defined using the FREE and num hazards
matrices where FREEt,k,i specifies if tensor k can be freed
in timestep t once tensor i has been computed and likewise
num hazards calculates how many dependencies are remain-
ing at the same point in the computation. We also con-
tinue using the runtime and size cost vectors, Ψcompute and
ξsize, and the bandwidth and available memory constants
of λbandwidth and µRAM .

4.3.2 Designing the Constraints

With additional operators, we modify the original con-
straints of PORT accordingly. The constraint Rt,i,n +
SRAM
t,i ≥ Rt,j,n ensures that any tensor j dependent on an-

other tensor i to be computed beforehand either in the same
timestep on the same device (rematerialization), or available
in RAM, where it could have been computed in a previous
timestep by another operator.

∨N
n {Rt−1,i,n} + SRAM

t−1,i +

M in
t−1,i ≥ SRAM

t,i maintains that for a tensor to be in RAM
at time t it must be in ram in the previous timestep, paged in,
or computed by any operator. SAUX

t−1,i +Mout
t−1,i ≥ SAUX

t,i

similarly requires tensors present in auxiliary memory to
be there in the previous timestep or be paged out from
RAM. SAUX

t,i ≥ M in
t,i and SRAM

t,i ≥ Mout
t,i both ensure

that a tensor cannot be paged in if it is not present in sec-
ondary storage and cannot be paged out if it is not present
in memory, respectively. maxn {Rt,:,n ·Ψcompute

n } = At

defines the helper matrix A with At as the maximum run-
time step t takes among all N operators. The presence
of tensors in RAM and auxiliary storage are initialized to
be empty to ensure that tensors are computed, to begin
with.

∨N
n {Rv,v,n} = 1 requires that tensor v is always

computed at time v, ensuring that the neural network com-
putation occurs as intended. Finally, as we are working
on memory-constrained devices, URAM

t,i ≤ µRAM ensures
that the formulation is within the memory bounds.

4.3.3 Designing the Objectives

Our primary, or α objective in PORT-M simply minimizes
the sum of time each timestep takes across all devices. To
reflect this, we introduce another secondary objective (β1)
in which we seek to minimize the total number of times
tensors are computed since much like with paging in and
out, tensors may be frivolously computed on other devices
if their combined runtime is under that of the maximum for
that timestep. We also seek to minimize unnecessary paging
(β2 objective) just as in single-operator PORT.

4.4 Torch2PORT: Integration with PyTorch

One of the common limitations of existing ILP training opti-
mizers is their usability and integration with the open-source
model ecosystem. For example, POET requires the compu-
tation of a training graph execution plan for each network
layer and parameters, limiting scalability. Additionally, in-
troducing network optimizations requires manual tuning of
integrating novel layers within the ILP formulation, con-
straining optimized testing.

To alleviate this, we introduce Torch2Port, a new tool for
automatically converting any PyTorch model to the ILP
formulation usable by PORT. Given any PyTorch model,
Torch2Port traces the full PyTorch computational graph
produced by torch.autograd, automatically identifies
the characteristics and output tensor sizes for each layer,
detects and applies existing PyTorch optimizations such as
inplace operations, and produces an ILP formulation for the
model compatible with PORT.

5 EVALUATION

In our evaluation of PORT, we aim to answer the following
questions:

1. Can PORT improve runtime for training across devices
and models?

2. Can PORT lower the peak-memory consumption for
training?



Training on Edge devices with Unified-Memory

Algorithm 1 PORT-M: The ILP formulation to find an optimal schedule of rematerialization and paging for the computation
of a neural network on multiple operators sharing a unified memory architecture

minimize:
T∑

t=1

At +

T∑
t=1

T∑
i=1

N∑
n=1

Rt,i,n +

T∑
t=1

T∑
i=1

{
M in

t,i +Mout
t,i

}
subject to: Rt,i,n + SRAM

t,i ≥ Rt,j,n ∀t ∈ V, ∀(vi, vj) ∈ E,∀n ∈ N

N∨
n

{Rt−1,i,n}+ SRAM
t−1,i +M in

t−1,i ≥ SRAM
t,i ∀t, i ≥ 2

SAUX
t−1,i +Mout

t−1,i ≥ SAUX
t,i ∀t, i ≥ 2

SAUX
t,i ≥ M in

t,i ∀t, i ≥ 2

SRAM
t,i ≥ Mout

t,i ∀t, i ≥ 2

max
n

{
Rt,:,n ·Ψcompute

n

}
= At ∀t ∈ V

SRAM
1,i = 0 ∀i ∈ V

SSSD
1,i = 0 ∀i ∈ V

N∨
n

{Rv,v,n} = 1 ∀v ∈ V

M in
t,: · ξsize +Mout

t,: · ξsize ≤ At · λbandwidth ∀t ∈ V

URAM
t,i ≤ µRAM ∀t, i ∈ V

ξinput + 2ξparam + SRAM
t,: · ξsize = Ut,0 ∀t ∈ V

Ut,i +
∑

k∈DEPS(i)

ξsizei FREEt,k,i +

N∨
n

{Ri+1,i,n} ξsizei+1 = Ut,i+1 ∀t, i ∈ V

{
1 if num hazards(t, k, i) = 0
0 else

}
= FREEt,k,i ∀t, k, i ∈ V

∑
j∈USERS(k)|j>i

N∨
n

{Rt,j,n}+ (1−
N∨
n

{Rt,i,n}) + SRAM
t+1,k = num hazards(t, k, i) ∀t, k, i ∈ V

A ∈ RV

R ∈ {0, 1}V ×V ×N

SAUX ,SRAM ,M in,Mout ∈ {0, 1}V ×V

U ∈ RV ×V

FREE ∈ {0, 1}V ×V ×V

num hazards ∈ NV ×V ×V

5.1 Experimental Setup

To evaluate these questions, we test PORT on the following
hardware devices: 1) embedded edge devices: ARM Cortex
M0 class MKR1000, ARM Cortex M4F class nrf52840,
and the A72 class Raspberry Pi 4B+, 2) consumer-available
edge devices: Jetson Orin, iPhone 13 Pro Max, and iPhone
15 Pro Max.

For Nvidia Jetson Orin, we profiled the two accelerators
CPU and GPU. For the iPhone 13 Pro Max and iPhone 15
Pro Max, we profiled the three accelerators.

Benchmarking on Apple devices is dependent on convert-
ing the Pytorch layers to an iPhone-compatible CoreML
model format and measuring layer execution time with Ap-
ple Instruments profiling software. As Apple’s devices have
heavily shifted towards a system-on-chip model with uni-
fied memory architecture in recent years starting with the
M1 MacBook and latest iPhone devices (Liao et al., 2022),
we take advantage of this unique positioning to utilize the
multi-operator execution scheduling generated by PORT-M.
For instance, profiling on the iPhone 13 Pro Max which em-
ploys the Apple A15 Bionic system-on-chip and integrates a
6-core CPU, 5-core GPU, and 16-core Apple Neural Engine



Training on Edge devices with Unified-Memory

(ANE) to interface with one set of 6GB LPDRR4X uni-
fied memory presents a readily-viable memory-constrained
environment with multiple acceletors.

Our benchmark models include VGG16 and ResNet-18, and
the BERT transformer model. VGG16 and ResNet-18 were
trained with CIFAR-10 image configuration.

To evaluate PORT’s ability to lower runtimes and memory
consumption for training, our primary objective is a com-
parative analysis against the existing SotA POET baseline,
with this two-pronged focus in mind:

1. Comparing PORT’s efficiency across multi-platform
configurations to the POET baseline. The PORT-
M solver relies on the profiling data of the baseline
networks. This solver was run with the following
configuration combinations: Jetson Orin GPU/CPU
and Apple CPU/GPU, GPU/ANE, CPU/ANE and
CPU/GPU/ANE (respectively for the individual plat-
forms).

2. Evaluating PORT’s network optimizations in reduc-
ing runtime and RAM consumption without affecting
solution feasibility.

To evaluate the former, we accurately measured execution
times for network layers to collect data on the accelerators of
the consumer-available edge devices. To do so, we utilized
the PyTorch conversion within Torch2Port to isolate each
layer in the model and benchmark execution time. Each
measurement was repeated 100 times for accuracy, and then
the median execution time for each layer was accounted for
within the solver constraints.

To evaluate the network optimizations, we adopt a flop-
based model. First, we gather FLOP, FLOP per Watt, Mem-
ory read-write throughput, etc. We then use these metrics
to assess the runtime and RAM consumption benefits pre-
sented by the PORT network optimizations.

A unique feature of PORT is its approach to scheduling train-
ing graph nodes without altering training parameters. This
ensures resilience against hyper-parameter changes while
respecting the memory constraints of devices. Hence, we
don’t report any accuracy numbers. However, we note that
since ILP solutions commonly yield lengthy solve times, we
ensure that both PORT and the baseline POET’s solutions
adhere to universal 10-minute solve-time constraint on all
platforms.

Furthermore, since PORT intends to minimize runtime and
does not rely on setting a runtime constraint within the ILP,
we impose this condition during our POET experiments.
Since POET can sacrifice runtime for energy savings, this
constraint acts as a tight bound for POET, yielding a constant
network runtime for the POET ILP solution on all networks.

5.2 Multi-Accelerator Configurations Results

5.2.1 Jetson Orin CPU and GPU

On the Jetson Orin platform, when evaluating the ResNet18
model, the standalone PORT-M configuration interleaving
the Jetson Orin CPU and GPU achieved a speedup of ap-
proximately 1.090x, compared to the POET baseline.

5.2.2 Apple CPUs, GPUs, and Apple Neural Engine

iPhone 13 Pro Max For the ResNet18 model A.2 on the
iPhone CPU, the POET configuration registered at 41.02 ms
while PORT using the ANE alongside the CPU presented
runtime benefit with a speedup of 1.122x, registering at
36.56 ms. Turning to the iPhone GPU, POET was recorded
at 119.18 ms while PORT taking advantage of all three
accelerators CPU, GPU, and ANE yielded a runtime of
36.63 ms, translating to a 3.257x speedup on the GPU runs.
On the iPhone ANE, POET registered a runtime of 74.27
ms while the aforementioned PORT configuration using
CPU alongside the ANE at 36.56 ms produced a speedup of
2.030x over the POET ANE configuration. Overall, when
juxtaposing the best from POET, which was the iPhone
CPU at 41.02 ms, against the top performer from all PORT
configurations, the CPU-ANE combination at 36.56 ms by
PORT-M, we observe a speedup of 1.122x.

For the BERT model A.2 on the iPhone CPU, the POET
configuration had a runtime of 54.79 ms, while the leading
PORT configuration which utilized the ANE alongside the
CPU demonstrated benefit with a 1.071x speedup with its
51.16 ms runtime. For the iPhone GPU, the POET con-
figuration was at 117.16 ms, while PORT using the ANE
alongside the GPU showcased a 1.260x speedup at 92.97
ms. On the iPhone ANE, POET registered a runtime of
113.63 ms while the mentioned interleaving of CPU along-
side ANE allowed PORT-M to provide a notable 2.221x
speedup with a runtime of 51.16 ms. Broadly, comparing
the best of POET which was on the iPhone CPU at 54.79
ms, with the overall best from PORT, the CPU-ANE’s 51.16
ms resulted in a speedup of 1.071x.

iPhone 15 Pro Max For the VGG16 model A.2 on the
iPhone CPU, the POET configuration clocked in at 151.56
ms. In contrast, PORT using the ANE alongside the CPU
presented a runtime of 101.86 ms, achieving a speedup of
1.487x. Considering the iPhone GPU, POET had a runtime
of 238.51 ms, while PORT utilizing the CPU, GPU, and
ANE - the PORT-M (CPU-GPU-ANE) configuration - dis-
played its best performance at 102.63 ms, resulting in a
2.324x speedup over the GPU runs. On the iPhone ANE,
POET showed a runtime of 126.79 ms with the aforemen-
tioned PORT (CPU-GPU-ANE) configuration providing the
best benefit on ANE as well at 102.63 ms, resulting in a
1.235x speedup. Overall, when contrasting the top perfor-



Training on Edge devices with Unified-Memory

0.5 1.0 1.5 2.0 2.5
RAM Budget (bytes) 1e6

0.078

0.079

0.080

0.081

0.082

0.083

0.084

Ru
nt

im
e 

(m
s)

ResNet18 on Jetson Orin

1.5 2.0 2.5 3.0 3.5
RAM Budget (bytes) 1e7

37

38

39

40

41

Ru
nt

im
e 

(m
s)

ResNet18 on iPhone 13 Pro Max

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
RAM Budget (bytes) 1e6

0.1575

0.1600

0.1625

0.1650

0.1675

0.1700

0.1725

Ru
nt

im
e 

(m
s)

VGG16 on Jetson Orin

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
RAM Budget (bytes) 1e8

105

110

115

120

125

Ru
nt

im
e 

(m
s)

VGG16 on iPhone 15 Pro Max

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
RAM Budget (bytes) 1e8

3.80

3.85

3.90

3.95

4.00

4.05

4.10

4.15

4.20

Ru
nt

im
e 

(m
s)

BERT on Jetson Orin

1.90 1.95 2.00 2.05 2.10 2.15
RAM Budget (bytes) 1e8

51.0

51.5

52.0

52.5

53.0

53.5

54.0

54.5

Ru
nt

im
e 

(m
s)

BERT on iPhone13 Pro Max

POET (Patil et al, ICML 2022) PORT

Figure 2. PORT provides runtime speedup across diverse models and devices. When comparing even just the best performing SoTA POET
single-operator configuration to PORT’s best configurations, PORT demonstrates runtime speedup on all networks for the iPhones with
the most significant improvement observed on the iPhone 15 Pro Max for the VGG16 model at 1.245x, alongside notable speedup on
JetsorinTX2. for some configurations like JetsorinTX2’s VGG16 and BERT, there is no runtime enhancement, reflecting the complexity
of profiling data on these devices. Even when leveraging their multi-operator settings, achieving runtime speedup isn’t guaranteed due to
inherent intricacies in task distribution and memory management, laying the path for further exploration. Breakdowns of these graphs can
be found in Appendix A.

mance from POET, which was the iPhone CPU at 151.56
ms, with the best from all PORT configurations, the CPU-
ANE combination at 101.86 ms, PORT provides a speedup
of 1.245x is observed.

PORT’s integration of unified memory to optimally lever-
age multiple accelerators reflects enhanced model execution
times over single accelerator configurations run in POET.
Even when comparing against the top-performing SoTA
POET single-operator configuration, PORT demonstrates

superior overall runtime gains on its best multi-accelerator
configurations. Individual accelerators may offer speedup
for specific layers in networks, and PORT takes advantage
of this fact by effectively distributing tasks among the CPU,
GPU, and ANE without the overhead of data transfer be-
tween isolated memory spaces. This benefit from unified
memory ensures that the optimal accelerator for each layer
is utilized and leads to runtime speedups in model training.



Training on Edge devices with Unified-Memory

POET (Patil et al, ICML 2022) (ANE) PORT-M (CPU_ANE)
Configurations

0

20

40

60

80

100

Ru
nt

im
e 

(m
s)

BERT on iPhone 13 Pro Max
POET (Patil et al, ICML 2022) (ANE)
PORT-M (CPU_ANE)

Figure 3. PORT-M profiled on iPhone 13 Pro Max (CPU and ANE)
outperforms POET (ANE) with a 2.221x runtime speedup.

Table 1. PORT performance for ResNet18 compared to POET

RAM Diff. ↓ Speed ↑

PORT patch -84.81% 3.52x slower
PORT inplace -67.95% 2.25x faster
PORT fused -31.60% 1.03x faster
PORT cache -0.99% 1.12x faster
PORT im2col -0.99% 1.42x faster

5.3 Network Optimizations Results

For ResNet18, across all embedded device platforms, the
PORT patch configuration significantly reduced RAM usage
by 84.81% compared to the POET baseline configuration
but led to the model performing 3.52× slower. The PORT
inplace configuration demonstrated a runtime speedup of
2.25× while reducing RAM usage by 67.95%, reflecting
improvements for both runtime and memory consumption.
The PORT fused configuration showed more moderate gains
with 1.03x speedup and a RAM reduction of 31.60%. Both
PORT cache and PORT im2col configurations showed simi-
lar performance with no reduction in RAM consumption but
runtime benefits of 1.12× and 1.42× speedup, respectively.

For VGG16, on all embedded device platforms, the
PORT inplace configuration displayed a significant runtime
speedup of 11.51x and RAM reduction of 94.24%. While
the PORT patch configuration displayed a substantial reduc-
tion in RAM by 80.57%, it reflected a 3.25x slower runtime.
The PORT fused configuration offered moderate memory
reduction at 20.38% with no runtime improvements. The
PORT im2col configuration also reflected no runtime im-
provements but didn’t produce any memory consumption
benefits either. Notably, the PORT cache configuration
posed as an outlier in providing no reduction of RAM us-
age while considerably slowing down the model at 23.15x
slower runtime.

Table 2. PORT performance for VGG16 compared to POET

RAM Diff. ↓ Speed ↑

PORT patch -94.24% 11.51x faster
PORT inplace -80.57% 3.25x slower
PORT fused -20.38% 1.00x faster
PORT cache 0.00% 23.15x slower
PORT im2col 0.00% 1.00x faster

6 CONCLUSION

As model architectures advance and grow, training these
networks on edge devices presents unique challenges within
memory-constrained environments, resulting in memory-
intensive processes with increasingly large runtimes. How-
ever, modern edge devices often feature a unified memory
architecture where device accelerators like CPUs, GPUs,
and NPUs share a single physical memory. Our Private
Optimal Runtime Training (PORT) algorithm capitalizes
on this architecture, enabling neural network training un-
der memory-limited constraints and optimal training times.
Through an Integer Linear Programming (ILP) framework,
PORT optimizes the scheduling of each network layer on
both single and multi-accelerator platforms while balancing
rematerialization and paging to maintain feasible training
runtimes and constrained peak-memory usage. Additionally,
by integrating layer-wise optimizations alongside the ILP
layer scheduling, PORT enhances the efficiency of neural
network training on edge devices.

We discover these benefits in runtime speedup and memory
consumption reduction on a variety of device platforms and
networks. With its application on both single and multi-
accelerator platforms, PORT provides a robust solution for
neural network training in memory-constrained environ-
ments. Future work could explore refining the scheduling
algorithms and broadening PORT’s compatibility with dif-
ferent device architectures.

REFERENCES

Bai, Z., Zhang, Z., Zhu, Y., and Jin, X. {PipeSwitch}:
Fast pipelined context switching for deep learning ap-
plications. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pp. 499–
514, 2020.

Banerjee, D. A microarchitectural study on apple’s a11
bionic processor. Arkansas State University: Jonesboro,
AR, USA, 2018.

Bartan, B., Li, H., Teague, H., Lott, C., and Dilkina, B.
Moccasin: Efficient tensor rematerialization for neural
networks. arXiv preprint arXiv:2304.14463, 2023.

Boroumand, A., Ghose, S., Akin, B., Narayanaswami, R.,
Oliveira, G. F., Ma, X., Shiu, E., and Mutlu, O. Google



Training on Edge devices with Unified-Memory

neural network models for edge devices: Analyzing and
mitigating machine learning inference bottlenecks. In
2021 30th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), pp. 159–172.
IEEE, 2021a.

Boroumand, A., Ghose, S., Akin, B., Narayanaswami, R.,
Oliveira, G. F., Ma, X., Shiu, E., and Mutlu, O. Mitigating
edge machine learning inference bottlenecks: An empir-
ical study on accelerating google edge models. arXiv
preprint arXiv:2103.00768, 2021b.

Chen, T., Moreau, T., Jiang, Z., Shen, H., Yan, E. Q., Wang,
L., Hu, Y., Ceze, L., Guestrin, C., and Krishnamurthy,
A. Tvm: end-to-end optimization stack for deep learning.
arXiv preprint arXiv:1802.04799, 11(20), 2018.

Choi, S., Kim, T., Jeong, J., Ausavarungnirun, R., Jeon, M.,
Kwon, Y., and Ahn, J. Memory harvesting in {Multi-
GPU} systems with hierarchical unified virtual memory.
In 2022 USENIX Annual Technical Conference (USENIX
ATC 22), pp. 625–638, 2022.

Das, A. and Brunschwiler, T. Privacy is what we care about:
Experimental investigation of federated learning on edge
devices. In Proceedings of the First International Work-
shop on Challenges in Artificial Intelligence and Machine
Learning for Internet of Things, pp. 39–42, 2019.

Dou, Z., Ye, D., and Wang, B. Autosegedge: Searching for
the edge device real-time semantic segmentation based
on multi-task learning. Image and Vision Computing, pp.
104719, 2023.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and
Bouchachia, A. A survey on concept drift adaptation.
ACM computing surveys (CSUR), 46(4):1–37, 2014.

Gheorghe, A.-G., Crecana, C.-C., Negru, C., Pop, F., and
Dobre, C. Decentralized storage system for edge comput-
ing. In 2019 18th International Symposium on Parallel
and Distributed Computing (ISPDC), pp. 41–49. IEEE,
2019.

Imambi, S., Prakash, K. B., and Kanagachidambaresan, G.
Pytorch. Programming with TensorFlow: Solution for
Edge Computing Applications, pp. 87–104, 2021.

Jang, J. and Adib, F. Underwater backscatter network-
ing. In Proceedings of the ACM Special Interest Group
on Data Communication, SIGCOMM ’19, pp. 187–199,
New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450359566. doi: 10.1145/
3341302.3342091. URL https://doi.org/10.
1145/3341302.3342091.

Jia, Y. Learning semantic image representations at a large
scale. 2014.

Jung, J., Kim, J., and Lee, J. Deepum: Tensor migration
and prefetching in unified memory. In Proceedings of the
28th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
Volume 2, pp. 207–221, 2023.

Kalamationos, J. and Kaeli, D. R. Temporal-based proce-
dure reordering for improved instruction cache perfor-
mance. In Proceedings 1998 Fourth International Sym-
posium on High-Performance Computer Architecture, pp.
244–253. IEEE, 1998.

Kasperek, D., Podpora, M., and Kawala-Sterniuk, A. Com-
parison of the usability of apple m1 processors for various
machine learning tasks. Sensors, 22(20):8005, 2022.

Khan, O., Park, G., and Seo, E. Dacapo: An on-device learn-
ing scheme for memory-constrained embedded systems.
ACM Transactions on Embedded Computing Systems, 22
(5s):1–23, 2023.

Khani, M., Hamadanian, P., Nasr-Esfahany, A., and Al-
izadeh, M. Real-time video inference on edge devices
via adaptive model streaming. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 4572–4582, 2021.

Khoshsirat, A., Perin, G., and Rossi, M. Divide and save:
Splitting workload among containers in an edge device to
save energy and time. arXiv preprint arXiv:2302.06478,
2023.

Kim, H., Sim, J., Gera, P., Hadidi, R., and Kim, H. Batch-
aware unified memory management in gpus for irregular
workloads. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 1357–1370,
2020.

Klaus, J., Blacher, M., and Giesen, J. Compiling tensor
expressions into einsum. In International Conference on
Computational Science, pp. 129–136. Springer, 2023.

Li, S., Tian, C., Tam, K., Ma, R., and Li, L. Breaking on-
device training memory wall: A systematic survey. arXiv
preprint arXiv:2306.10388, 2023.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Feder-
ated learning: Challenges, methods, and future directions.
IEEE signal processing magazine, 37(3):50–60, 2020.

Liao, X., Li, B., and Li, J. Impacts of apple’s m1 soc
on the technology industry. In 2022 7th International
Conference on Financial Innovation and Economic De-
velopment (ICFIED 2022), pp. 355–360. Atlantis Press,
2022.

https://doi.org/10.1145/3341302.3342091
https://doi.org/10.1145/3341302.3342091


Training on Edge devices with Unified-Memory

Lin, J., Chen, W.-M., Lin, Y., Gan, C., Han, S., et al. Mcunet:
Tiny deep learning on iot devices. Advances in Neural
Information Processing Systems, 33:11711–11722, 2020.

Lin, J., Chen, W.-M., Cai, H., Gan, C., and Han, S.
Mcunetv2: Memory-efficient patch-based inference for
tiny deep learning. arXiv preprint arXiv:2110.15352,
2021.

Nasir, M., Muhammad, K., Ullah, A., Ahmad, J., Baik,
S. W., and Sajjad, M. Enabling automation and edge
intelligence over resource constraint iot devices for smart
home. Neurocomputing, 491:494–506, 2022.

Niu, W., Guan, J., Wang, Y., Agrawal, G., and Ren, B. Dnn-
fusion: accelerating deep neural networks execution with
advanced operator fusion. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, pp. 883–898,
2021.

Patil, S. G., Dennis, D. K., Pabbaraju, C., Shaheer, N.,
Simhadri, H. V., Seshadri, V., Varma, M., and Jain, P.
Gesturepod: Enabling on-device gesture-based interac-
tion for white cane users. In Proceedings of the 32Nd
Annual ACM Symposium on User Interface Software
and Technology, UIST ’19, pp. 403–415, New York,
NY, USA, 2019. ACM. ISBN 978-1-4503-6816-2. doi:
10.1145/3332165.3347881. URL http://doi.acm.
org/10.1145/3332165.3347881.

Patil, S. G., Jain, P., Dutta, P., Stoica, I., and Gonzalez, J.
Poet: Training neural networks on tiny devices with inte-
grated rematerialization and paging. In International Con-
ference on Machine Learning, pp. 17573–17583. PMLR,
2022.

Sarkar, V. and Thekkath, R. A general framework for
iteration-reordering loop transformations. In Proceedings
of the ACM SIGPLAN 1992 conference on Programming
language design and implementation, pp. 175–187, 1992.

Schuler, M., Membarth, R., and Slusallek, P. Xengine:
Optimal tensor rematerialization for neural networks in
heterogeneous environments. ACM Transactions on Ar-
chitecture and Code Optimization, 20(1):1–25, 2022.

SK, P., Kesanapalli, S. A., and Simmhan, Y. Characterizing
the performance of accelerated jetson edge devices for
training deep learning models. Proceedings of the ACM
on Measurement and Analysis of Computing Systems, 6
(3):1–26, 2022.

Spicer, E. and Baidya, S. Performance tradeoff in dnn-based
coexisting applications in resource-constrained cyber-
physical systems. In 2023 IEEE International Confer-
ence on Smart Computing (SMARTCOMP), pp. 219–221.
IEEE, 2023.

Sudharsan, B., Breslin, J. G., and Ali, M. I. Edge2train: A
framework to train machine learning models (svms) on
resource-constrained iot edge devices. In Proceedings
of the 10th International Conference on the Internet of
Things, pp. 1–8, 2020.

Sun, Y., Ochiai, H., and Esaki, H. Decentralized deep learn-
ing for multi-access edge computing: A survey on com-
munication efficiency and trustworthiness. IEEE Trans-
actions on Artificial Intelligence, 3(6):963–972, 2021.

Sun, Y., Shao, J., Mao, Y., Wang, J. H., and Zhang, J. Semi-
decentralized federated edge learning with data and de-
vice heterogeneity. IEEE Transactions on Network and
Service Management, 2023.

Tsymbal, A. The problem of concept drift: Definitions and
related work. 05 2004.

Vasisht, D., Kapetanovic, Z., Won, J., Jin, X., Chandra, R.,
Sinha, S., Kapoor, A., Sudarshan, M., and Stratman, S.
Farmbeats: An iot platform for data-driven agriculture.
In 14th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 17), pp. 515–529,
2017.

Wang, L., Xu, Y., Xu, H., Chen, M., and Huang, L. Acceler-
ating decentralized federated learning in heterogeneous
edge computing. IEEE Transactions on Mobile Comput-
ing, 2022.

Wu, B., Zhang, Z., Bai, Z., Liu, X., and Jin, X. Transparent
{GPU} sharing in container clouds for deep learning
workloads. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pp. 69–
85, 2023.

Zhao, J., Mortier, R., Crowcroft, J., and Wang, L. Privacy-
preserving machine learning based data analytics on edge
devices. In Proceedings of the 2018 AAAI/ACM Confer-
ence on AI, Ethics, and Society, pp. 341–346, 2018.

Zhao, X., Le Hellard, T., Eyraud-Dubois, L., Gusak, J., and
Beaumont, O. Rockmate: an efficient, fast, automatic and
generic tool for re-materialization in pytorch. 2023.

Zhao, Z., Wang, K., Ling, N., and Xing, G. Edgeml: An
automl framework for real-time deep learning on the
edge. In Proceedings of the International Conference
on Internet-of-Things Design and Implementation, pp.
133–144, 2021.

http://doi.acm.org/10.1145/3332165.3347881
http://doi.acm.org/10.1145/3332165.3347881


Training on Edge devices with Unified-Memory

A APPENDIX

We include comprehensive results for the Profiling and
FLOP-based experiments within this appendix. Graphs
extend beyond just the best-performing configurations and
provide detailed comparisons to the SoTA POET baseline.

A.1 FLOP-Based Results for PORT Optimizations

0.2 0.4 0.6 0.8 1.0
RAM Budget (bytes)

0.1

0.2

0.3

0.4

0.5

0.6

Ru
nt

im
e 

(m
s)

ResNet18 on platform a72
PORT baseline
PORT cache
PORT fused
PORT im2col
PORT inplace
PORT patch

0.2 0.4 0.6 0.8 1.0
RAM Budget (bytes)

0

50000

100000

150000

200000

250000

Ru
nt

im
e 

(m
s)

VGG16 on platform m0
PORT baseline
PORT cache
PORT fused
PORT im2col
PORT inplace
PORT patch

Figure 4. PORT inplace significantly outpaces baseline in reduc-
ing RAM budget and runtime for feasible solutions with PORT
and patch and im2col also providing moderate improvements to
reducing RAM consumption

We include FLOP-Based results for PORT optimizations
against each other. We only include a single platform for
each model because results are replicated across each plat-
form regardless of the network. This accompanies the num-
bers discussed in section 5.3.

A.2 Profiled Results for PORT Multi-Accelerator
Configurations

We provide a comprehensive overview of the benefits af-
forded by PORT over POET in profiled runs on both the
iPhone13 Pro Max and iPhone15 Pro Max. Here it can be
seen how PORT benefits network runtimes across differing
combinations of operators, rather than just the best of all
combinations as shown in Figure 2. This accompanies the
explanation and breakdown provided in 5.2.

1.90 1.95 2.00 2.05 2.10 2.15
RAM Budget (bytes) 1e8

50

60

70

80

90

100

110

120

Ru
nt

im
e 

(m
s)

BERT on iPhone13 Pro Max
POET (Patil et al, ICML 2022) (ANE)
POET (Patil et al, ICML 2022) (CPU)
POET (Patil et al, ICML 2022) (GPU)
PORT-M (CPU_ANE)
PORT-M (CPU_GPU)
PORT-M (CPU_GPU_ANE)
PORT-M (GPU_ANE)

Figure 5. BERT on the iPhone13 Pro Max across all possible com-
binations of operators on PORT (vs) POET.

1.5 2.0 2.5 3.0 3.5
RAM Budget (bytes) 1e7

40

60

80

100

120

Ru
nt

im
e 

(m
s)

ResNet18 on iPhone13 Pro Max
POET (Patil et al, ICML 2022) (ANE)
POET (Patil et al, ICML 2022) (CPU)
POET (Patil et al, ICML 2022) (GPU)
PORT-M (CPU_ANE)
PORT-M (CPU_GPU)
PORT-M (CPU_GPU_ANE)

Figure 6. A breakdown of ResNet18 runs on the iPhone13 Pro Max
across all possible combinations of operators on PORT versus all
POET baselines

1.92 1.94 1.96 1.98 2.00 2.02 2.04
RAM Budget (bytes) 1e8

50

60

70

80

90

100

110

Ru
nt

im
e 

(m
s)

BERT on iPhone15 Pro Max
POET (Patil et al, ICML 2022) (ANE)
POET (Patil et al, ICML 2022) (CPU)
POET (Patil et al, ICML 2022) (GPU)
PORT-M (CPU_ANE)
PORT-M (CPU_GPU)
PORT-M (CPU_GPU_ANE)
PORT-M (GPU_ANE)

Figure 7. BERT on iPhone15 Pro Max across all possible combi-
nations of operators on PORT (VS) POET.

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
RAM Budget (bytes) 1e8

100

120

140

160

180

200

220

240

Ru
nt

im
e 

(m
s)

VGG16 on iPhone15 Pro Max
POET (Patil et al, ICML 2022) (ANE)
POET (Patil et al, ICML 2022) (CPU)
POET (Patil et al, ICML 2022) (GPU)
PORT-M (CPU_ANE)
PORT-M (CPU_GPU)
PORT-M (CPU_GPU_ANE)
PORT-M (GPU_ANE)

Figure 8. VGG16 on iPhone15 Pro Max across all possible combi-
nations of operators on PORT (VS) POET


